DEVELOPMENT OF AI-BASED ALGORITHM FOR RETINAL DISEASE SCREENING

DASWANI, SAHIL BHARAT

PROBLEM

"Globally, at least 2.2 billion people have a near or distance vision impairment. In at least 1 billion – or almost half – of these cases, vision impairment could have been prevented or has yet to be addressed."

Causes of the Problem

- Limited accessibility to medical care
- Diagnosing Ocular Diseases is a time-consuming process

OBJECTIVES

 To develop an Al image classifier to detect presence of different types of ocular diseases using fundus images with an accuracy of over 85%.
 To experiment with different and combined convolutional neural network (CNN) architectures to achieve the best accuracy.
 To develop a user-friendly web app that implements the Al model, which can be used by the public and medical professionals.

DEVELOPING THE IMAGE CLASSIFIER

- Trained The Model Using PyTorch
- Used Transfer learning for existing pre-trained Models: ResNet50, VGG16 and VIT

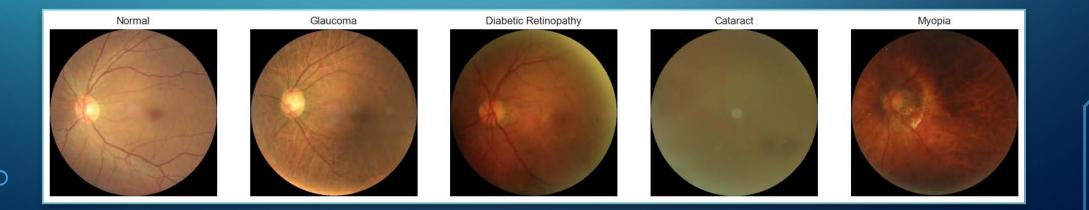
Steps:

- 1. Data analysis and data processing
- 2. Training the model
- 3. Evaluating the accuracy of the model
- 4. Optimize Hyperparameters
- 5. Repeat

DIFFICULTIES OF CLASSIFYING MULTIPLE DISEASES

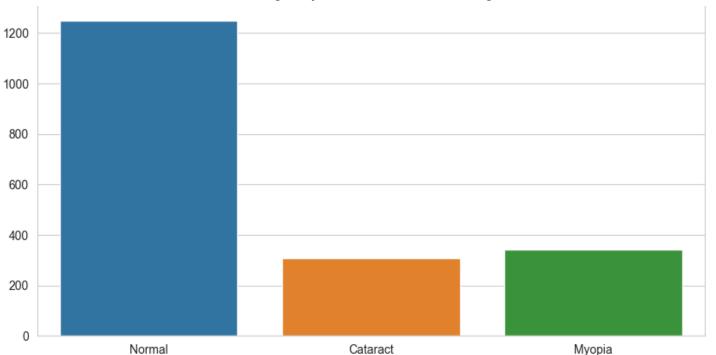
Confusion Matrix (Probabilities)							
Cataract	93.44%	9.68%	10.26%	2.90%	5.60%	- 0.8	
Diabetes	0.00%	16.13%	1.28%	0.00%	0.00%	- 0.6	
Predicted Glaucoma	0.00%	3.23%	11.54%	2.90%	4.40%	- 0.4	
Myopia	1.64%	6.45%	5.13%	79.71%	3.20%	- 0.2	
Normal	4.92%	64.52%	71.79%	14.49%	86.80%		
	Cataract	Diabetes	Glaucoma Actual	Myopia	Normal	- 0.0	

- Encountered difficulties classifying multiple diseases
- Diabetic Retinopathy and Glaucoma had bad accuracy
- Decided to reduce the number of classes to Normal, Cataract and Myopia



SKEWED DATASET

- The imbalance of data in each class caused a lot of bias
- Built an image augmenter function to augment images in each minority class.
- The augmenter creates new images by randomly flipping, rotating and adding blur to existing images.



Number of images per class in training dataset

TRANSFER LEARNING ALGORITHM

- The hyperparameters: learning rate, epochs and batch size were defined
- The cross-entropy loss function and Adam loss optimizer was defined
- During the training loop:
 - Input data and labels were moved to the GPU for acceleration
 - Reset the gradients of the optimizer
 - Forward pass: Feed the inputs to the model
 - Compute the loss
 - Backward pass: Compute gradients with respect to the loss
 - Update the model parameters using the optimizer

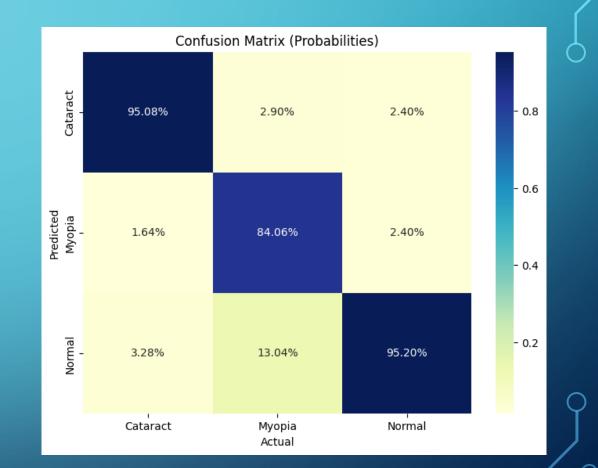
TRANSFER LEARNING ALGORITHM

Training loop validation:

- Move the input data and labels to the GPU.
- Perform a forward pass to obtain the predicted outputs.
- Compute the validation loss.
- Compute a confusion matrix to evaluate the per-class accuracies.
- Accumulate the validation loss and compute the average class accuracy.
- The model with the highest average class accuracy was saved

MODEL EVALUATION

- Load the saved model
- Loops through all the images and predict the diagnosis of all the fundus images in the testing dataset.
- Generated a confusion matrix to display all the class accuracies



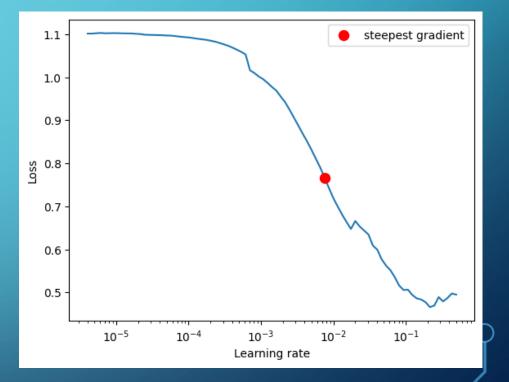
Confusion Matrix of ViT model

OPTIMISING THE HYPERPARMETERS

- The aim was to optimize batch size, epochs and learning rate
- Attempted to use a grid search to loop through a range of hyperparameter combinations and evaluate the accuracy of the model.
- This method was time consuming and was ineffective for finding the optimal values of epochs and learning rate.
- However, I figured out the optimal batch size for my GPU was 128 because any thing over that would overload the GPU and use a lot more memory swap.

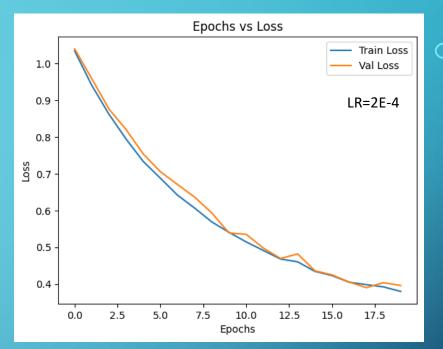
OPTIMISING THE HYPERPARMETERS

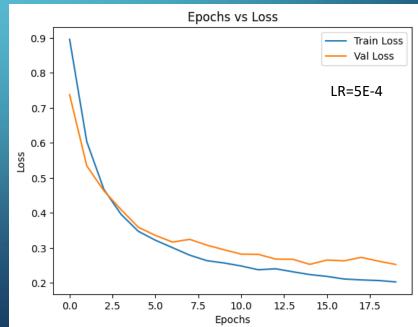
- The next attempt was to use a library called LR_Finder
- Plots the loss against the learning rate and finds points where the gradient is steepest to give the optimal learning rate.
- The learning rate given by the library was not always optimal.
- Used it as a starting point and used an incremental trial and error approach to optimize the learning rate



OPTIMISING THE HYPERPARMETERS

- Kept the epochs fixed and only adjusted the learning rate
- Realized that epochs is a tradeoff between training time and window to diverge at the optimal solution
- Kept reducing the learning rate incrementally using a trial-and-error approach until the loss converged.



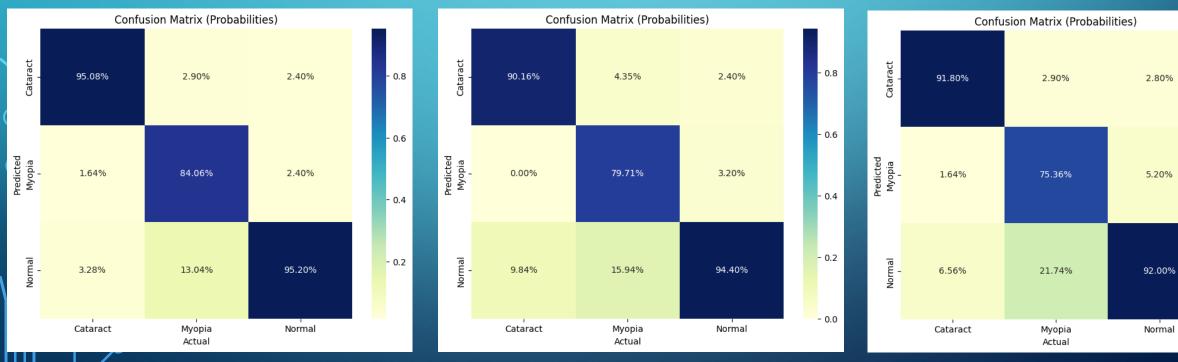


R

◦ RESULTS

0

Model	Average Class Accuracy (%)
VGG16	86.39
ResNet50	88.09
VIT	91.45



VIT

ResNet50

VGG16

- 0.8

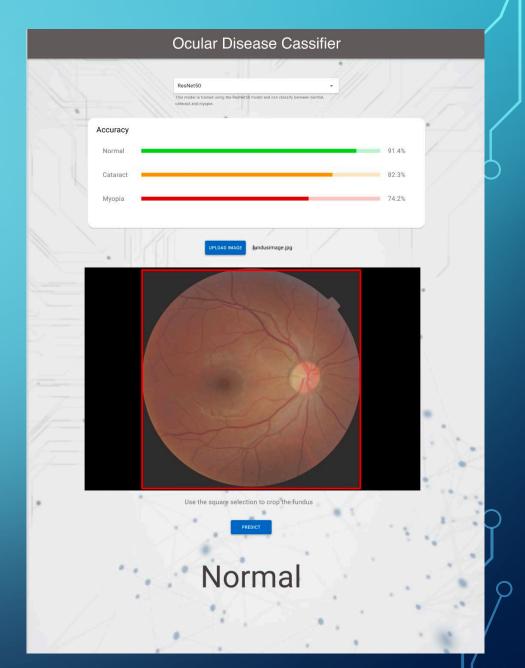
- 0.6

- 0.4

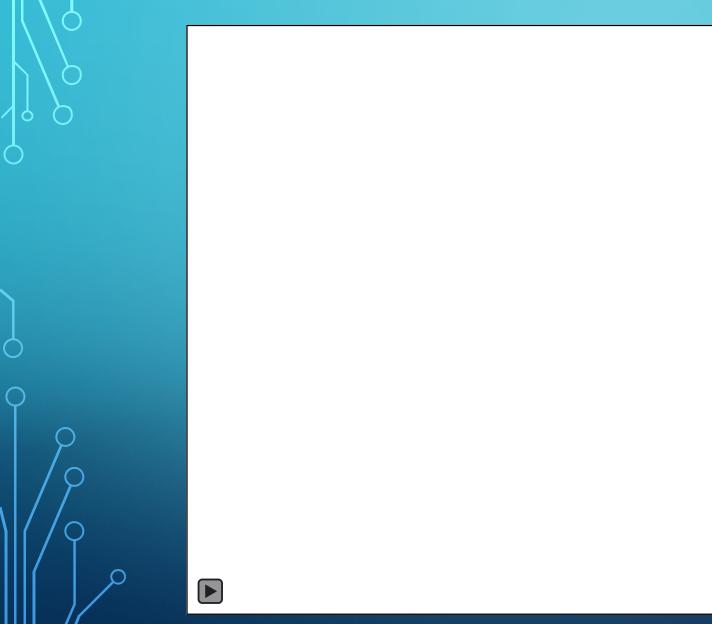
- 0.2

DEVELOPING THE WEB APP

- Used Figma for the web design
- Used React.js and MaterialUI for the Client Side
- Used Flask to build the API and run the image classifier on the Server Side
- Collected all the inputted images in Firebase
 Storage for future improvements of the model.



DEMONSTRATION



CONCLUSION

Achieved a 91.5% accuracy

• Tested out and compared the different CNN models and vision transformer.

- Successfully built a web application to run the models
- However, its limitation of only being able to classify between 3 classes makes it not useful enough yet to be implemented in the medical field
- Further improvements are needed to make it a viable product

FUTURE WORK

Potential for semi-supervised learning using collected data

- Gather a much larger dataset of fundus images
- Explore Bayesian Optimization and Hyperparameter Importance Analysis for hyperparameter tuning
- Explore increasing the dataset size using stable diffusion